

EIMG

The European Aero-engine Community

Riga, 20 April 2005

EIMG: The European aero-engine community

Objectives of EIMG

- > EIMG was formed in 1990 in response to a request from the European Commission.
- ➤ EIMG consists of one representative from each of the major European Aero-engine companies.
- > The Purpose of EIMG is:
 - to provide a European Aero-engine view on research and technology programmes
 - to maximise leverage of technology acquisition between partners in precompetitive areas
 - to support the European Commission in developing future framework programmes

The EIMG companies undertake joint actions such as co-ordinated preparation and submission of project proposals to be carried out under European Commission contracts within the Research Framework Programmes

Structure of **EIMG**

EIMG

Engine Industry
Management Group for R&T
(Lead: MTU Aero Engines)

Technical Areas

Low Emission Combustion (RR Germany) **Turbomachinery** (MTU) **Mechatronics** (MTU) **Advanced Materials** (ITP) Manufacture&Overhaul (Volvo) **Whole Engine** (RR UK) **Mechanical Systems** (Turbomeca) **Noise** (Snecma)

ACARE 2020 Environmental Goals : The Engine Contribution

ACARE 2020 OBJECTIVES (reference : 2000 aircraft)

- Reduce perceived noise by half (10dB)
- Reduce CO2 by 50%
- Reduce NOx by 80%
- Acceptable cost

ACARE 2020 OBJECTIVES Engine Contribution

- Reduce noise by 6db at each certification point
- Reduce CO2 by 20%
- Reduce NOx by 80%
- Acceptable cost

Background for Noise

- High bypass-ratio (BPR) turbofan engines represented a technology breakthrough allowing a 20 db noise decrease in 40 years.
- To reach the 2020 targets: need for new breakthrough technologies

Impact of Bypass-Ratio on Fuel Consumption / CO2

Impact of Overall Pressure Ratio (OPR) on NOx

Overview of Integrated Projects in FP 5-6-7

Evolution of Engines for Noise

Evolutionary Technologies

SILENCER FP5

Noise reduction technologies on conventional aircraft/engine configuration

Revolutionary technologies for SRA Objectives

Conventional Fan

Geared Fan

Contra Fan

VITAL FP6 IP 2nd Call

Novel engine architecture for noise, and fuel burn reduction

Datum: Engine in service in 2000

STREP's in 1st & 2nd CALL of FP6

- 15 STREPS with engine leadership were retained (success rate 1:3, total budget ca. 85 mio €, ca. 45 mio € funding, 150-200 partners)
- Subjects covered :
 - Combustion for less emissions
 - Turbine and compressor technologies
 - Advanced control systems
 - Advanced material technologies
 - Manufacturing technologies
 - Engine noise (modelling, testing, ANC development...)

STREP's in 3rd CALL of FP6

- 20 STREPS with engine leadership in preparation (total budget ca. 120 mio €, ca. 65 mio € funding requested, success rate 1:3 expected)
- Subjects covered :
 - Combustion for less emissions
 - Turbine and compressor aerodynamics, aeroelasticity
 - Advanced monitoring and measurement systems
 - Advanced material technologies
 - Manufacturing technologies
 - Advanced rotordynamics
 - Advanced bearing lubrication systems
 - Engine fan and jet noise modelling & testing

Conclusions

- FP6 engine makers objectives are consistent with ACARE objectives
- Environment is the priority
- Technology breakthroughs will be necessary to achieve 2020 targets
- All European aero-engine manufacturers are working together
- All Integrated Projects include participation of aircraft and equipment sectors
- All projects involve widely Research Establishments, Academia and SME

Contact

EIMG Chairman: Dr. Hermann Scheugenpflug

MTU Aero Engines GmbH

Dachauer Str. 665

80995 Munich

Germany

E-mail: Hermann.Scheugenpflug@muc.mtu.de